Храповые механизмы

Храповые механизмы

Собачка 1 обычно прижата к колесу пружиной 2 (рис. 1). Реже используют храповые механизмы, в которых собачка взаимодействует с поступательно перемещающейся рейкой.

Храповые колеса и собачки изготовляют из сталей 35, 50, У10А, 15Х, 20Х, 25ХГСА. При значительных нагрузках, а также для уменьшения износа их либо подвергают объемной закалке, либо цементируют, а затем закаливают. В приборах храповые колеса изготовляют также из латуней ЛК80-Э и ЛС63-3 и бронзы Бр.КМцЗ-1. Иногда и собачки изготовляют из латуни.

Используют также сплавы алюминия.

Рис.1
Пружины храпового механизма создают момент, прижимающий собачку к храповому колесу.

Однако этот момент не предназначен для преодоления сил и моментов, которые могут действовать на собачку от храпового колеса.

Усилие пружины оказывается для этой цели недостаточным. Оно лишь вводит собачку в зацепление с храповым колесом.

Поэтому положение оси С собачки выбирают с таким расчетом, чтобы окружная сила F и вызываемая ею сила трения F обеспечивали появление равнодействующей силы F n , момент которой на плече Са прижимал бы собачку к храповому колесу, а не выводил ее из зацепления (рис. 1). Это достигается в том случае, если угол a положения оси собачки больше угла j трения. Для обеспечения этого неравенства необходимо удалить ось С собачки от оси храпового колеса (см. собачку, показанную выше колеса). Однако при этом следует опасаться переброса собачки на другую сторону храпового колеса, особенно после некоторого износа собачки. В таких случаях храповой механизм может срываться.

Поэтому недопустимо и слишком большое удаление оси С собачки от оси храпового колеса. У собачки, показанной слева от

колеса, для надежного функционирования храпового механизма также необходимо выполнять неравенство к > j , что может быть обеспечено, когда ось, наоборот, находится ближе к оси колеса, а собачка сделана достаточно длинной. При этом момент силы F n прижимает собачку к храповому колесу.

Соответствующее направление нормальной силы F n можно обеспечить поднутрением передней грани зубьев храпового колеса на угол a . Тогда ось собачки может располагаться на касательной к средней окружности зубьев храпового колеса (рис. 2). Для обеспечения прижатия собачки к зубьям храпового колеса в этом случае необходимо, чтобы угол поднутрения был больше угла трения. Часто a выбирается равным 10°. У этой конструкции при малом окружном шаге зубьев зуб храпового колеса получается ослабленным.

Рис.2
Окружная сила, действующая на диаметре d храпового колеса, F = 2 M / d, где М — крутящий момент на о с и храпового колеса; d — диаметр впадин зубьев храпового колеса, d == mz ; z — число зубьев храпового колеса; т — модуль, т = p t / p , р t — окружной шаг зубьев храпового колеса по окружности впадин. На основании расчета по среднему допускаемому давлению можно определить модуль зубьев храпового колеса:
Рис. 3
где [p]— допускаемое давление на единицу ширины зуба храпового колеса; определяется по справочнику; y = b /т, b — ширина колеса. На рис. 3 показана конструкция храповика часового механизма.

Вместо храпового колеса использовано обычное колесо с зубьями часового профиля. Это упростило конструкцию, так как сократилось число колес в механизме.

Собачка 1 имеет несколько выступов и удерживается на оси винтом 4. На рис. 3, а показано положение собачки относительно колеса 2 при подзаводке часов.

Момент М зав отводит собачку, которая одним из своих выступов непрерывно прижимается под действием пружины 3 к зубьям колеса 2, п ропуская их.

Выступ собачки захватил конец Д пружины 3, деформируя последнюю. Конец Г пружины закреплен неподвижно. На рис. 3, б показано стопорящее положение собачки, когда она удерживает колесо 2. Зуб колеса упирается в один из выступов собачки. При переходе из положения а в положение б храповое колесо немного поворачивается, благодаря чему ослабляется напряжение заводной пружины после ее тугого завода. Это способствует увеличению срока службы заводной пружины и стало возможным благодаря применению собачки с несколькими выступами.

Рис.4
Рис. 5
Храповые механизмы могут обеспечивать преобразование вращательного движения в колебательное или наоборот. На рис. 4 показана конструкция храпового механизма электрических часов, в которой толкающие собачки 1 и 3 преобразуют качания якоря 2 в прерывисто-вращательное движение храпового колеса 4. При движении якоря как в прямом, так и в противоположном направлениях собачки попеременно захватывают и толкают зубья храпового колеса (рис. 4, а, 6). На рис. 5 даны условные обозначения храповых механизмов для схем (ГОСТ 2.770—68): а — односторонний храповой механизм с наружным зацеплением; б — двусторонний храповой механизм с наружным зацеплением; в — односторонний храповой механизм с внутренним зацеплением.

Кулисный механизм (рис. 6 , а) наиболее часто применяют для преобразования вращательного движения кривошипа 1 в качательное движение кулисы 3. Камень кулисы 2 перемещается вдоль нее по направляющим.

Кулисные механизмы могут быть использованы также для преобразования равномерного вращательного движения в неравномерное вращательное движение при а r (рис. 6 , б). Кулисы с камнем применяют также в тангенсных , синусных и других механизмах для замены высших кинематических пар низшими.

оценка комнаты в Брянске
оценка стоимости предприятия в Смоленске
оценка строительства в Курске